Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Invasion by non‐native annual grasses poses a serious threat to native vegetation in California, facilitated through interaction with wildfires. Our work is the first attempt to use the coupled fire‐atmosphere model, WRF‐Fire, to investigate how shifts from native, shrub‐dominated vegetation to invasive grasses could have affected a known wildfire event in southern California. We simulate the Mountain Fire, which burned >11,000 ha in July 2013, under idealized fuel conditions representing varying extents of grass invasion. Expanding grass to double its observed coverage causes fire to spread faster due to the lower fuel load in grasses and increased wind speed. Beyond this, further grass expansion reduces the simulated spread rate because lower heat release partially offsets the positive effects. Our simulations suggest that grass expansion may generally promote larger faster‐spreading wildfires in southern California, motivating continued efforts to contain and reduce the spread of invasive annual grasses in this region.more » « less
-
Abstract Droughts over the last century in Southwestern North America (SWNA) have had severe consequences for people and ecosystems across the region, most recently during the early 21st‐century megadrought (2000–2022). The 20thcentury, however, was bracketed by two extended pluvials that also had significant impacts in the region. We use a 1,224 years (800–2023 CE) record of observed and reconstructed soil moisture, in concert with a paleoclimate reanalysis product, to place the 20th‐century pluvials in a longer‐term context and investigate the occurrence and dynamics of similar events in the Common Era. Analyses of the soil moisture reconstruction demonstrate that pluvials and megapluvials are as ubiquitous as droughts and megadroughts over the last millennium. The early (19 years; 1905–1923) and late (22 years; 1978–1999) 20th‐century pluvials rank as the second and first wettest in the record, respectively, positioning these as events on par with the most extreme megadroughts. Pluvials show a strong association with tropical Pacific (warm) sea surface temperatures (SSTs) during the 20thcentury and over the prior millennium, though the role of the tropical Atlantic is much more uncertain and ambiguous. Using a Bayesian hierarchical modeling approach trained on the pre‐industrial period (800–1849 CE), we find that the record setting late 20th‐century megapluvial likely occurred as a consequence of anomalously strong Pacific sea surface temperature forcing. This work establishes pluvial and megapluvial events as intrinsic components of Common Era hydroclimate variability in SWNA, comparable in importance to droughts and megadroughts.more » « less
-
Abstract In summer 2021, 90% of the western United States (WUS) experienced drought, with over half of the region facing extreme or exceptional conditions, leading to water scarcity, crop loss, ecological degradation, and significant socio‐economic consequences. Beyond the established influence of oceanic forcing and internal atmospheric variability, this study highlights the importance of land‐surface conditions in the development of the 2020–2021 WUS drought, using observational data analysis and novel numerical simulations. Our results demonstrate that the soil moisture state preceding a meteorological drought, due to its intrinsic memory, is a critical factor in the development of soil droughts. Specifically, wet soil conditions can delay the transition from meteorological to soil droughts by several months or even nullify the effects of La Niña‐driven meteorological droughts, while drier conditions can exacerbate these impacts, leading to more severe soil droughts. For the same reason, soil droughts can persist well beyond the end of meteorological droughts. Our numerical experiments suggest a relatively weak soil moisture‐precipitation coupling during this drought period, corroborating the primary contributions of the ocean and atmosphere to this meteorological drought. Additionally, drought‐induced vegetation losses can mitigate soil droughts by reducing evapotranspiration and slowing the depletion of soil moisture. This study highlights the importance of soil moisture and vegetation conditions in seasonal‐to‐interannual drought predictions. Findings from this study have implications for regions like the WUS, which are experiencing anthropogenically‐driven soil aridification and vegetation greening, suggesting that future soil droughts in these areas may develop more rapidly, become more severe, and persist longer.more » « less
-
Summer temperature extremes can have large impacts on humans and the biosphere, and an increase in heat extremes is one of the most visible symptoms of climate change. Multiple mechanisms have been proposed that would predict faster warming of heat extremes than typical summer days, but it is unclear whether this is occurring. Here, we show that, in both observations and historical climate model simulations, the hottest summer days have warmed at the same pace as the median globally, in each hemisphere, and in the tropics from 1959 to 2023. In contrast, the coldest summer days have warmed more slowly than the median in the global average, a signal that is not simulated in any of 262 simulations across 28 CMIP6 models. The observed stretching of the cold tail indicates that observed summertime temperatures have become more variable despite the lack of hot day amplification. The interannual variability and trend in the warming of both hot and cold extremes compared to the median can be explained from a surface energy balance perspective based on changes in net surface radiation and evaporative fraction. Tropical hot day amplification is projected to emerge in the future (2024–2099, SSP3-7.0 scenario), while Northern Hemisphere heat extremes are expected to continue to follow the median.more » « less
-
The trapped residual magnetic flux during the cool-down due to the incomplete Meissner state is a significant source of radio frequency losses in superconducting radio frequency cavities. Here, we clearly correlate the niobium microstructure in elliptical cavity geometry and flux expulsion behavior. In particular, a traditionally fabricated Nb cavity half-cell from an annealed poly-crystalline Nb sheet after an 800 C heat treatment leads to a bi-modal microstructure that ties in with flux trapping and inefficient flux expulsion. This non-uniform microstructure is related to varying strain profiles along the cavity shape. A novel approach to prevent this non-uniform microstructure is presented by fabricating a 1.3 GHz single cell Nb cavity with a cold-worked sheet and subsequent heat treatment leading to better flux expulsion after 800 ∘C/3 h. Microstructural evolution by electron backscattered diffraction-orientation imaging microscopy on cavity cutouts, and flux pinning behavior by dc-magnetization on coupon samples confirms a reduction in flux pinning centers with increased heat treatment temperature. The heat treatment temperature-dependent mechanical properties and thermal conductivity are reported. The significant impact of cold work in this study demonstrates clear evidence for the importance of the microstructure required for high-performance superconducting cavities with reduced losses caused by magnetic flux trapping.more » « less
-
Abstract Future flood risk assessment has primarily focused on heavy rainfall as the main driver, with the assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the presence of and changes in vegetation have long been known to influence the relationship between rainfall and runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning regression tree approach, we find that changes in canopy evaporation is the most important variable related to changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios. Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand, and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with important implications for society.more » « less
-
Abstract We present a long-period radio transient (GLEAM-X J0704−37) discovered to have an optical counterpart, consistent with a cool main-sequence star of spectral type M3. The radio periodicity occurs at the longest period yet found, 2.9 hr, and was discovered in archival low-frequency data from the Murchison Widefield Array. High time resolution observations from MeerKAT show that pulsations from the source display complex microstructure and high linear polarisation, suggesting a pulsar-like emission mechanism occurring due to strong, ordered magnetic fields. The timing residuals, measured over more than a decade, show tentative evidence of a ∼6 yr modulation. The high Galactic latitude of the system and the M-dwarf star excludes a magnetar interpretation, suggesting a more likely M-dwarf/white dwarf binary scenario for this system.more » « less
-
Abstract Forests are a large carbon sink and could serve as natural climate solutions that help moderate future warming. Thus, establishing forest carbon baselines is essential for tracking climate‐mitigation targets. Western US forests are natural climate solution hotspots but are profoundly threatened by drought and altered disturbance regimes. How these factors shape spatial patterns of carbon storage and carbon change over time is poorly resolved. Here, we estimate live and dead forest carbon density in 19 forested western US ecoregions with national inventory data (2005–2019) to determine: (a) current carbon distributions, (b) underpinning drivers, and (c) recent trends. Potential drivers of current carbon included harvest, wildfire, insect and disease, topography, and climate. Using random forests, we evaluated driver importance and relationships with current live and dead carbon within ecoregions. We assessed trends using linear models. Pacific Northwest (PNW) and Southwest (SW) ecoregions were most and least carbon dense, respectively. Climate was an important carbon driver in the SW and Lower Rockies. Fire reduced live and increased dead carbon, and was most important in the Upper Rockies and California. No ecoregion was unaffected by fire. Harvest and private ownership reduced carbon, particularly in the PNW. Since 2005, live carbon declined across much of the western US, likely from drought and fire. Carbon has increased in PNW ecoregions, likely recovering from past harvest, but recent record fire years may alter trajectories. Our results provide insight into western US forest carbon function and future vulnerabilities, which is vital for effective climate change mitigation strategies.more » « less
An official website of the United States government
